Sentiment Analysis of Comment Texts Based on BiLSTM
نویسندگان
چکیده
منابع مشابه
the effect of genre-based teaching on reading comprehension of literary texts
تحقیق حاضر به بررسی کاربرد روش ژانر-محور را در محیط آموزش زبان عمومی می پردازد.روش ژانر-محور به زبان آموزان کمک میکند که در زمینه خوانش پیشرفت کنند. بعضی از محققین معتقد اند که روش تدریس ژانر-محور به تدریج به زبان آموزان کمک می کند تا در درک ژانر های مختلف مهارت یابند (هایلند 2004).همچنین امروزه توجه روز افزونی به اهمیت استفاده از ادبیات در برنامه آموزشی زبان انگلیسی (esl/efl ) شده است. زمانی ک...
15 صفحه اولSentiment analysis on conversational texts
This paper describes ongoing work related to the analysis of spoken utterance transcripts and estimating the speaker’s attitude towards the whole dialogue on the basis of their opinions expressed by utterances. Using the standard technology used in sentiment analysis, we report promising results which can be linked to the conversational participants’ self-evaluation of their experience of the i...
متن کاملMulti-Channel Lexicon Integrated CNN-BiLSTM Models for Sentiment Analysis
We improved sentiment classifier for predicting document-level sentiments from Twitter by using multi-channel lexicon embedidngs. The core of the architecture is based on CNNBiLSTM that can capture high level features and long term dependency in documents. We also applied multi-channel method on lexicon to improve lexicon features. The macroaveraged F1 score of our model outperformed other clas...
متن کاملSentiment Intensity Analysis of Informal Texts
This paper presents a method for an automatic collection of a corpus that can be used to train a sentiment classifier which determines whether an expression is neutral or polar. Depending on the words from the comments of online social networking platform, the human sentiment can be easily extracted, if we can make a machine to understand this extraction by defining some determined hypothesis. ...
متن کاملSentiment Analysis of Short Informal Texts
We describe a state-of-the-art sentiment analysis system that detects (a) the sentiment of short informal textual messages such as tweets and SMS (message-level task) and (b) the sentiment of a word or a phrase within a message (term-level task). The system is based on a supervised statistical text classification approach leveraging a variety of surfaceform, semantic, and sentiment features. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2909919